Polymer Thick Film Paste & Material Compatibility Discussion

John Crumpton

September 14, 2015
Agenda

• What is a Polymer thick Film
• Basic Thick Film Paste Technology
• Standard Processing (Printing & Drying)

• New Applications & Material Selection/Compatibility

• Other Processing Possibilities & Material Selection/Compatibility

• Conclusions
DuPont has developed over 1300 thick film compositions, sold into myriad applications.

- Self-Regulating Heaters
- RFID Antenna
- EL Backlights
- Membrane Touch Switch
- Biosensors
- Photovoltaic
What Is PTF?

Polymeric thick film (PTF) is a widely used technology for the processing of circuit patterns onto plastic and flexible substrates using screen printing technology.

PTF’s are in the form of a thick film “paste”.

Low temperature process (typically < 150 °C).

PTF was first used to manufacture MTS (membrane touch switch) circuits in the late 70’s.

Mature robust technology in use for >30 years.
“Thermoplastic” Polymer Thick Film Conductors

- Conductive particles pack together as ink dries, forming electrical pathways
- Conductive flake/particle ratio balanced for best conductivity at lowest cost
- Best overall balance of electrical & physical performance and printability
- Formulated with solvents that balance screen life with drying efficiency
- Thermoplastic inks can be re-softened with heat and/or solvent
- Part of a complete system with PTF carbons, dielectrics, & encapsulants
Cross Section of Dried Print

PE825 (≈ 26% Ag)

5029 (≈ 80% Ag)
Function of Constituents

POWDER: Active element of paste, determines electrical properties of paste

RESIN: Provides adhesion to substrate, cohesion of the conductive powder together and protects conductor from external effects

SOLVENT: Controls viscosity, dissolves resin and wets substrate surface
Conductive Powder Technology

- **Silver**
 - Very high conductivity
 - Price linked by silver metal market price
 - Most widely used PTF conductor
 - Silver Oxide is conductive

- **Carbon**
 - Low conductivity
 - Used for high resistance applications
 - Very inexpensive

- **Other (Au, Pt, Zn, Cu, Ag Coated Cu, AgAgCl, etc)**
 - Customized for application
 - Wide range of properties

SGIA Printed Electronics Roundtable
Conductor Choices

Heat Map Showing typical trade-offs

<table>
<thead>
<tr>
<th>Type</th>
<th>Resistivity mΩ/□/mil</th>
<th>Resistance mΩ/□</th>
<th>Variety of Material Choices</th>
<th>Hardness/Adhesion</th>
<th>Cost $/gram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver Coated Cu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nano Silver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Critical Parameters for Conductors

Particle Morphology Critical

Flake vs. Spherical Particle

Surfactant Coating on Precipitated Particles

Interaction with Resin!

Maximize Particle Packing Density

PSD (1-15 microns)
Powder Morphology

Spherical Silver

Flake Silver
Silver flaking is controlled by a combination of process parameters

Powder must be tailored to the paste composition
Vehicle/Medium Manufacture

- Resins
- Solvents
- Modifiers

Vehicle
Resin Technology

- **Thermoplastic**
 - Shrinks during *drying* but softens on re-heating
 - Higher flexibility
 - Lower *drying* temperature $\Rightarrow 110-140^\circ C$

- **Thermoset**
 - Reacts during curing to form a rigid structure which cannot be changed with further heating
 - Rigid, more stable
 - High temperature curing $\Rightarrow 160-200 ^\circ C$
Critical Parameters for Polymers

Solubility Parameters

• Tg of Resin (>70 C; preferably >90C)
• Interaction With Conductive Phase (surfactant compatibility)
• Molecular Weight (10000-100000)
• Decomposition Temp (>150C; preferably >200C)
Paste Technology/Solvent

Solvent

- Many types
 - Glycol ethers, esters, alcohols
- Solubility
 - Must dissolve resin effectively
- Volatility
 - Balance between processing/screen life
- Environmental
 - Low odor
 - Non harmful
 - Low flammability
Testing of Paste Properties:

- Solids
- Viscosity (rheology)
- Fineness of grind (measure of powder dispersion)
- Functional properties (dependent on application)
 - Resistivity
 - Adhesion
 - Hardness/Flexibility
 - Brightness, Dielectric Constant
Typical Functional Testing

Conductors

- Printing properties
- Line resolution
- Resistivity
- Flexibility
- Adhesion
- Hardness
Industry Standards for Conductors

ASTM (Printed Electronics) & IPC (Printed Electronics)

- Cross Hatch Tape Test Adhesion
- Pencil Hardness
- Crease Test (180° blend)
- Flex Testing (bending around mandrel)
- Silver Migration Resistance
- Resistance
Technology of Screen Printing

Advantages:

- Additive process for electronic circuitry on various substrate types
- Thicker ink deposits in far fewer passes versus inkjet or flexo / gravure
- Broad base of manufacturers and process knowledge; mature industry
- Continually updated technology for new and current applications
Screen Printing Diagram

- Squeegee moves ink across & through screen mesh
- Emulsion defines & gaskets printed pattern
- Mesh count, wire diameter, & emulsion affect deposit

Substrate

Fine Mesh

Coarse Mesh
Processing Polymer Thick Film Composition

Drying / Curing
Electrical Properties

Effect of Curing Time/Temp on Resistivity

Box Oven

Temperature 120°C

Resistivity vs. Time / minutes

IR Oven

Temperature 135°C

Resistivity vs. Time / minutes
Dryers for Processing PTF Compositions

UV oven

Forced Air & UV Oven

Tower Dryer on Roll-to-Roll line
When Choosing Ink Materials Consider

• Material Compatibility
• Substrate & Printing Process
• Metallurgy
• Sample Size Requirements
• Drying / Curing Option
• Thermal vs. Photonic Curing
• Cost Constraints
• End Product Value Proposition
Traditional Printed Electronics

Materials (>95% Screen Print):
Conductors: Silver, Gold, Copper, Alloys
Dielectrics – Multilayer, Cross-over, Encapsulant
Resistors – Carbon, Ruthenium
Specialty – PTC, Phosphor, ITO

Applications / Substrates
Membrane Switch, EL / PET film
Rear Window Defogger / Glass
Hybrid Microelectronics / Alumina
Photovoltaic / Silicon

RFID Antenna
EL Lamps/Backlight
Membrane Touch Switch
Bio Test Strip
Battery Tester
Chip Resistors
“Hybrid IC” on Alumina
Photovoltaic Si Cells

SGIA Printed Electronics Roundtable
Primary Substrates for Printed Electronics - 2014

DuPont Printed Electronics
DuPont Low-Silver Printed Conductors

Low Temperature

High Temperature

PVC
Polyethylene
Polypropylene
Polystyrene
Acrylcs
EVA
PET
Polycarbonate
TPU
Stabilized PET
PEN
High Temp EP
Polyimide
Transformations in Printed Electronics - 2016

DuPont PE 827/828 Inks for Low Temperature Printed Electronics

DuPont PE Stretchable Electronic Materials

DuPont ME In-Mold Electronic Materials

DuPont™ Kapton™ KA Inks for High Temperature Electronics

Low Temperature

High Temperature

PVC
Polyethylene
Polypropylene
Polystyrene
Acryls
EVA
PET
Polycarbonate
TPU
Stabilized PET
PEN
High Temp EP
Polyimide
Substrate Temperature Stability for Printed Electronics

<table>
<thead>
<tr>
<th>Substrate (Common Name)</th>
<th>Max Drying Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyimide (Kapton)</td>
<td>180 - 220°C</td>
</tr>
<tr>
<td>Polyetherimide (Ultem)</td>
<td>170 - 190°C</td>
</tr>
<tr>
<td>Polyethylene Napthalate (Teonex)</td>
<td>150 - 160°C</td>
</tr>
<tr>
<td>Stabilized Polyester Film (Melinex)</td>
<td>130 - 140°C</td>
</tr>
<tr>
<td>Thermoplastic Polyurethane (TPU)</td>
<td>100 - 120°C</td>
</tr>
<tr>
<td>Polycarbonate Film</td>
<td>80 - 120°C</td>
</tr>
<tr>
<td>Polyvinyl chloride (PVC)</td>
<td>60 - 85°C</td>
</tr>
<tr>
<td>PVDF Film (Piezoelectric)</td>
<td>60 - 85°C</td>
</tr>
<tr>
<td>Polyolefin (Tyvek)</td>
<td>60 - 90°C</td>
</tr>
<tr>
<td>Polyethylene</td>
<td>60 - 80°C</td>
</tr>
</tbody>
</table>

*Chart indicates maximum drying temperature of substrates for **dimensional tolerances**, NOT maximum operating temperature of the substrates or inks*
New low-temperature inks are optimized to dry efficiently at 80ºC and can cure as low as 60ºC with good electrical performance.
DuPont™ PE827 and PE828 do not dry rapidly on the screens.

However, at 60°C, their unique chemistry causes them to quickly cure, providing excellent electrical performance.

The drying test to the right provides an indication of screen life performance.

Grind Gauge Drying Test

Blue = minutes to dry at room temperature, higher depth correlates to more screen clogging.
Emerging Printed Electronics

In Mold Electronics: Capacitive Touch Technology

Materials:
- Polycarbonate Substrate
- Printed Silver Conductors that are flexible
- Other printed materials

Flat Sheets

View “A” Side

View “B” Side

Thermoformed

View “A” Side

View “B” Side

View “B” Side

SGIA Printed Electronics Roundtable
Wearable Electronics
Printing on TPU

- Thin option providing exceptional comfort
- Rugged and washable
Emerging Printed Electronics

Printed Heaters that replace “wires”
Lower cost, improved safety
PTC Carbon and Low Resistivity Silver:

(Automotive)
Seat Heater Technology Comparison

<table>
<thead>
<tr>
<th>Category</th>
<th>ITW PTC Heater</th>
<th>Wire Type Heater</th>
<th>Carbon Type Heater</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self Regulation</td>
<td>Yes</td>
<td>Sensor Required</td>
<td>Sensor Required</td>
</tr>
<tr>
<td>Short Circuit Result</td>
<td>Self-Cauterizes</td>
<td>Burn Potential</td>
<td>Burn Potential</td>
</tr>
<tr>
<td>Fold Over Result</td>
<td><5°C Increase</td>
<td>30°C Increase</td>
<td>15°C Increase</td>
</tr>
<tr>
<td>Conductor Temp</td>
<td>55°C</td>
<td>90°C</td>
<td>60°C</td>
</tr>
<tr>
<td>Current Draw</td>
<td>2.5A steady state</td>
<td>4.5A steady state</td>
<td>3.9A steady state</td>
</tr>
<tr>
<td>Independent Diagnostics</td>
<td>Not Required</td>
<td>Required</td>
<td>Required</td>
</tr>
</tbody>
</table>

Source: ITW
What is a PTC Carbon Resistor?

Resistance vs Temperature Comparison of 7282 & -151A

- Reference 7282
- Development PTC -151A
KA801 & Kapton® heaters demonstrations

at ~207 °C = ~405 F, held >1000 hours, cycled daily on Kapton® RS

DuPont™ encapsulant Kapton™ KA701
Kapton® film (conductive side) 100 ohm/square
DuPont™ silver paste Kapton™ KA801 0.1 ohm/square

Conductive

Dielectric

Rivet or clamp connection
To external power source (isolated)

SGIA Printed Electronics Roundtable
Force Sensor: Carbon Conductor

When Pressure is Applied the Resistance Decreases
Lamination of Conductors to Lower Resistance

Smart Card Processing
High Conductivity “Silver Alloy” for Smart Cards

Processing Conditions: 325-mesh, 0.9 mil wire, PE815 printed on ST505 PET; dried 130C/10-min; Hot-Roll Calendered 80C, 25 m/min
Other Deposition Techniques

- Spray
- Pad Printing
- Brush or Band
- Dip
- Decal
- Ink Jet
Curing Techniques for Printed Electronics

Thermal
Traditional, may require high temps for extended times

UV
Limited Mostly to Dielectrics; Not Efficient for Conductors

Photonic
Pulsed light, rapid sintering of particles

Other
- Laser
 Selective exposure by scanning with focused laser
- Microwave
 Rapid sintering, low penetration depths (approx 1.5 µ)
- Electrical
 Apply voltage across a printed structure, rapid sintering possible
- Plasma
 Sintering by exposure to low pressure plasma, e.g. argon
- Chemical
 Room temp process, chemically induced coalescence
Pulsed Photonic Curing/Sintering

High intensity strobe sinters metal containing inks on a variety of conventional and low cost substrates

Sintering times are in the millisecond range

High temperatures achieved locally for short periods of time, low temperature substrates are not damaged

Convenient: noncontact process, ambient conditions

Process variables are adjusted to accommodate ink and application (strobe energy, pulse length, number of pulses, web speed)

Commercial Units:
 NovaCentrix PulseForge®
 Xenon SINTERON™
 Holst Center / Philips Aachen
Before / After Photonic Curing

Thermal Cure 140C / 10min

Photonic Cure

Ag Flake

Ag Sphere
When Choosing Ink Materials Consult the Paste Supplier

- Substrate & Printing Process
- Material Compatibility
- Metallurgy
- Sample Size Requirements
- Drying Options
- Thermal vs. Photonic Curing
- Cost Constraints
- End Product Value Proposition
- Consult your Paste Vendor
Thank you,

John Crumpton
DuPont Photovoltaic & Advanced Materials
14 Alexander Dr.
Research Triangle Park, NC 27709

The miracles of science™